Performance Optimization of Personal Sound Zones with Crosstalk Cancellation

Yue Qiao* & Edgar Choueiri
3D Audio and Applied Acoustics (3D3A) Lab
Princeton University

Sep 7, 2023
*Email: yqiao@princeton.edu
Personal Sound Zones[1]

Rendering 3D Audio in Sound Zones

How to realize: controlling sound in the ear region

Methods: loudspeaker array beamforming\(^2\) and/or **pressure matching**\(^3\)

\(^2\) Qiao and Choueiri, AES Conv. 151, 2021. \(^3\) Poletti, AES Conv. 125, 2008.
Performance Trade-offs

Two performance attributes
• Acoustic isolation (audio-on-audio interference)
• Crosstalk cancellation (XTC, spatial envelopment)

Subjective preference
low interference > high envelopment\(^4\)

Objective limitation
Enabling XTC degrades isolation\(^5\) due to extra cost

\[^4\] Canter and Coleman, AES Conv. 150, 2021. \[^5\] Qiao et al., JASA-EL, 2022.
How to control the trade-off between isolation and crosstalk cancellation?

(To be answered with simulations)
Designing Sound Zone Filters

Pressure matching formulation

\[J = \|Hc - m_T\|^2 + \lambda \|c\|^2 \]

Minimize \(J \)

\[c^* = (H^H H + \lambda I)^{-1} H^H m_T \]

Choice of target response

Monaural: \(m_T = [M, M, 0, 0]^T \)

XTC: \(m_{T,L} = [M_{A,L}, 0, 0, 0]^T \)
 \(m_{T,R} = [0, M_{A,R}, 0, 0]^T \)
Proposed Optimization

Goal: adjust the performance trade-off through filter design

“Direct” Approach (cost function)

\[J = \|Hc - m_T\|^2 + \lambda \|c\|^2 \]

\[|h_{A,L}^H c - M_L|^2 + 2\alpha |h_{A,R}^H c|^2 + 2(1 - \alpha) \|H_B c\|^2 \]

Reproduction Error Crosstalk Dark Zone Leakage

0 ≤ α ≤ 1, α = 0.5 : original PM solution

α ↑: more envelopment α ↓: more isolation

“Indirect” Approach (target response)

\[m_{T,L} = [M_L,0,0,0]^T \]

\[\tilde{m}_{T,L} = [\beta M_L, (1 - \beta) M_L, 0, 0]^T \]

0.5 ≤ β ≤ 1, β = 1 : original PM solution

β ↑: more envelopment β ↓: (potentially) more isolation

Example

α

β
Performance Evaluation

Two performance metrics

• Crosstalk cancellation (XTC)
 • Level difference between two ears
 \(p_{A,L} \) vs. \(p_{A,R} \)

• Inter-Program Isolation (IPI)\(^5\)
 • Level difference between target and interfering programs
 \((p_{A,L}, p_{A,R})|_{BZ} \) vs. \((p_{A,L}, p_{A,R})|_{DZ} \)

\[^5\] Qiao, Guadagnin, and Choueiri, JASA-EL, 2022.
Case 1: Free-Field Simulation

Simulation Setup
• reproduces a laboratory setup
• includes non-idealities (e.g., nonuniform responses, displacement) through randomness
• uses constant regularization for simplicity

Evaluation metrics (100-1000 Hz)
• IPI and XTC spectra as a function of α (or β)
• Spatial map of Sound Pressure Level (SPL) at a given α (or β)
Case 1 Results — IPI & XTC Spectra

Direct Approach (increasing α boosts XTC)

- Changing α only affects IPI @ low frequencies
- Exponential relationship between α and frequency for a fixed XTC

Indirect Approach (increasing β boosts XTC)

- β has a wider effective range on IPI compared to α
- β has more uniform impact on XTC across frequencies
Case 1 Results — SPL Spatial Map @ 200 Hz

(Decreasing α or β boosts IPI)

Direct Approach

\[\alpha = 5e^{-05} \]

Indirect Approach

\[\beta = 0.5 \]

- Dark spot at contralateral ear moves towards DZ as α (or β) decreases
- Direct approach yields higher isolation for the mono case compared to indirect approach
Case 2: Real-World Simulation

- Simulation with measured transfer functions
- Same regularization applied
- IPI and XTC curves calculated with different α (or β) between 100 and 7000 Hz

Measurement Setup
Case 2 Results — IPI and XTC

Observations

- IPI & XTC levels decrease due to room reflections & non-idealities
- Previous takeaways confirmed
- Direct approach is more effective at boosting IPI than indirect approach
Conclusion

Two optimization approaches
• Direct approach (cost function) is more suitable for controlling the trade-off than the indirect one (target response)
• Indirect approach is more suitable for rendering audio with specific XTC requirements

Nature of the trade-off
• Only low frequencies are worth the compromise
• The trade-off highly depends on the system setup

Future work
• Evaluating with full measurements
• Conducting comprehensive subjective study
Performance Optimization of Personal Sound Zones with Crosstalk Cancellation

Yue Qiao* & Edgar Choueiri
3D Audio and Applied Acoustics (3D3A) Lab
Princeton University

Sep 7, 2023
*Email: yqiao@princeton.edu